On Discriminative Parameter Learning of Bayesian Network Classifiers

نویسندگان

  • Franz Pernkopf
  • Michael Wohlmayr
چکیده

We introduce three discriminative parameter learning algorithms for Bayesian network classifiers based on optimizing either the conditional likelihood (CL) or a lower-bound surrogate of the CL. One training procedure is based on the extended Baum-Welch (EBW) algorithm. Similarly, the remaining two approaches iteratively optimize the parameters (initialized to ML) with a 2-step algorithm. In the first step, either the class posterior probabilities or class assignments are determined based on current parameter estimates. Based on these posteriors (class assignment, respectively), the parameters are updated in the second step. We show that one of these algorithms is strongly related to EBW. Additionally, we compare all algorithms to conjugate gradient conditional likelihood (CGCL) parameter optimization [1]. We present classification results for frameand segment-based phonetic classification and handwritten digit recognition. Discriminative parameter learning shows a significant improvement over generative ML estimation for naive Bayes (NB) and tree augmented naive Bayes (TAN) structures on all data sets. In general, the performance improvement of discriminative parameter learning is large for simple Bayesian network structures which are not optimized for classification.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic margin-based structure learning of Bayesian network classifiers

The margin criterion for parameter learning in graphical models gained significant impact over the last years. We use the maximum margin score for discriminatively optimizing the structure of Bayesian network classifiers. Furthermore, greedy hill-climbing and simulated annealing search heuristics are applied to determine the classifier structures. In the experiments, we demonstrate the advantag...

متن کامل

Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers

We introduce a simple order-based greedy heuristic for learning discriminative structure within generative Bayesian network classifiers. We propose two methods for establishing an order of N features. They are based on the conditional mutual information and classification rate (i.e., risk), respectively. Given an ordering, we can find a discriminative structure with O ( Nk+1 ) score evaluations...

متن کامل

Discriminative Parameter Learning of General Bayesian Network Classifiers

Greiner and Zhou [1] presented ELR, a discriminative parameter-learning algorithm that maximizes conditional likelihood (CL) for a fixed Bayesian Belief Network (BN) structure, and demonstrated that it often produces classifiers that are more accurate than the ones produced using the generative approach (OFE), which finds maximal likelihood parameters. This is especially true when learning para...

متن کامل

Discriminative Scoring of Bayesian Network Classifiers: a Comparative Study

We consider the problem of scoring Bayesian Network Classifiers (BNCs) on the basis of the conditional loglikelihood (CLL). Currently, optimization is usually performed in BN parameter space, but for perfect graphs (such as Naive Bayes, TANs and FANs) a mapping to an equivalent Logistic Regression (LR) model is possible, and optimization can be performed in LR parameter space. We perform an emp...

متن کامل

Discriminative Learning of Bayesian Networks via Factorized Conditional Log-Likelihood

We propose an efficient and parameter-free scoring criterion, the factorized conditional log-likelihood (f̂CLL), for learning Bayesian network classifiers. The proposed score is an approximation of the conditional log-likelihood criterion. The approximation is devised in order to guarantee decomposability over the network structure, as well as efficient estimation of the optimal parameters, achi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009